Printe	d Page		Subject Code:- BBBA0205				
			Roll. No:				
	IOID	A DIGHTELTHE OF ENGINEEDING A					
N	NOIDA		ND TECHNOLOGY, GREATER NOIDA				
		(An Autonomous Institute Affi BBA	·				
		SEM: II - THEORY EXAMI					
		Subject: Quantitative Technic	,				
Time	e: 2.5	Hours	Max. Marks: 60				
		tructions:					
			per with the correct course, code, branch etc.				
			-A, B, & C. It consists of Multiple Choice				
	,	MCQ's) & Subjective type questions. n marks for each question are indicated	l on right -hand side of each auestion				
		your answers with neat sketches where	•				
		uitable data if necessary.					
5. Pre	ferabl	ly, write the answers in sequential orde	r.				
		should be left blank. Any written mater	ial after a blank sheet will not be				
evalud	ited/cl	hecked.					
	TON.		1.5				
SECT			15				
1. Atte	empt a	all parts:-					
1-a.	A	feasible solution to an LPP: (CO1, K2)	1				
	(a)	Must satisfy only the objective function	on				
	(b)	Must satisfy all constraints					
	(c)	Must violate some constraints					
	(d)	Must always be optimal					
1-b.	W	Thich method usually gives a better init	ial solution in terms of cost (CO2, K2)				
	(a)	North-West Corner Rule					
	(b)	Vogel's Approximation Method					
	(c)	Least Cost Method					
	(d)	MODI Method					
1-c.	` ,		ne game are same, the situation arises as 1				
- • •		CO3, K4)	in game are surre, and securities are all a				
	(a)	No solution exists.					
	(b)	Solution is mixed					
	(c)	Saddle point exists.					
	(d)	None of the above					
1-d.	` /	a two-machine sequencing problem, Jo	ohnson's Rule aims to: (CO4, K4)				
	(a)	Maximize cost	1				
	` ′						
	(b) Minimize idle time						

(c) Minimize total elapsed time (d) Maximize production The Minimax Regret criterion is based on: (CO5, K7) 1-e. (a) Minimizing the maximum profit (b) Maximizing the minimum payoff (c) Minimizing the maximum regret Maximizing the expected value (d) 2. Attempt all parts:-2.a. Write the necessarily requirement to formulate LPP. (CO1, K2) 2.b. Define unbalanced transportation problem. (CO2, K2) 2.c. How would you differentiate between zero-sum and non-zero-sum games. (CO3, K4) 2.d. Write two applications of sequencing in management. (CO4, K4) Define decision tree. (CO5, K7) 2.e. **SECTION-B** 3. Answer any three of the following:-Solve the following LPP by using simplex method (CO1, K2) 3-a. 2025 $MaxZ = 3x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_1, x_2 \ge 0$

1

2

2

2

2

2

15

5

5

5

3-b. Obtain an initial basic feasible solution to the following transportation problem by using least cost entry method. (CO2, K2)

	I	И	III	IV	Supply
A	10	11	9	22	4
В	15	14	11	13	9
C	18	18	15	12	12
Demand	5	6	4	10	

- 3.c. Solve the game whose payoff matrix is given by: (CO3, K4) $\begin{bmatrix} -5 & 2 \\ -7 & -4 \end{bmatrix}$
- 3.d. Give Johnson's procedure for determining an optimal sequence for processing n items on two machine. Give justification of the rule used in the procedure. (CO4, K4)
- 3.e. Explain Maximin Criterion with examples. (CO5, K7)

SECTION-C 30

4. Answer any one of the following:-

- 4-a. Give the main characteristics of Operations Research. (CO1, K2)
- 4-b. Solve the following LPP by Graphical method (CO1, K2)

6

6

Max z = 10x + 20y

s.t.
$$2x + y \le 70$$
,

$$x+y \leq 40$$
,

$$x + 3y \le 90$$
,

$$x \ge 0, y \ge 0$$

- 5. Answer any one of the following:-
- 5-a. Discuss the advantages and disadvantages of each method in finding an initial feasible solution of transportation problem. (CO2, K2)

6

5-b. Use VAM, to determine an initial basic feasible solution of the following transportation problem.(CO2, K2)

6

	D1	D2	D3	D4	Supply
O1	6	4	1	5	14
O2	8	9	2	7	6
O3	4	3	6	2	5
Demand	6	10	5	4	

- 6. Answer any one of the following:-
- 6-a. Explain Hungarian method to solve assignment problems. (CO3, K4)

6

6-b. Find the optimal solution for the assignment problem with the following cost matrix. (CO3, K4)

6

	I	II	III	IV	I
A	11	17	8	16	20
В	9	7	12	6	15
С	13	16	15	12	16
D	21	24	17	28	26
Е	14	10	12	11	15

- 7. Answer any one of the following:-
- 7-a. Predict the outcome on throughput when a non-optimal sequence is used in a sequencing problem. (CO4, K4)

6

7-b. Find the sequence that minimize the total elapsed time required to complete the following tasks on two machines. (CO4, K4)

6

Task	A	В	C	D	E	F
Machine I	2	4	9	6	3	2
Machine II	5	6	8	8	7	5

- 8. Answer any one of the following:-
- 8-a. In decision making under uncertainty explain the following:

6

- a) Maximax Criterion,
- b) Maximin Criterion. (CO5, K7)
- 8-b. The payoff table is given below:

6

Events	Actions				
	S_{I}	S_2	S_3	S_4	
A	27	12	14	26	
В	45	17	35	20	
С	52	36	29	15	

Which is optimal course of action according to

- i) Maximax criterion
- ii) Hurwicz criterion (value of alpha = 0.7)
- iii) Minimax regret criterion
- iv) Laplace criterion (CO5, K7)

